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Computational Ghost Imaging for Remote
Sensing Applications

Baris I. Erkmen∗

Although ghost imaging owes its early popularity to experiments geared towards

demonstrating novel physical principles in quantum optics, it has since developed into a

viable structured-illumination imaging modality. As the fundamental physical principles

that govern ghost imaging are now well-understood in terms of the coherence theory for

classical and quantum light, more attention is being devoted to identifying suitable

application areas. Here we report on the rigorous analysis of a ghost-imaging

remote-sensing architecture that acquires the 2D spatial Fourier transform of the target

object (which can be inverted to obtain a conventional image). We determine its image

signature, resolution and signal-to-noise ratio in the presence of practical constraints, such

as atmospheric turbulence, background radiation, and photodetector noise. We delineate

the impact of turbulence on resolution, and discuss speckle correlography as a possible

means of mitigation. Our analysis provides key insights into the performance differences

between ghost imaging and conventional active imaging, and identifies scenarios in which

ghost imaging—theoretically—yields performance superior to conventional active imagers.

I. Introduction

Ghost imaging is a transverse imaging modality which has been receiving much attention
owing to a rich interconnection between low-spatial-coherence imaging physics, and signal
processing tailored to active computational imaging. The original ghost imaging
experiments consisted of two correlated optical beams traversing distinct paths and
impinging on two spatially-separated photodetectors [1, 2, 3, 4, 5, 6]: one beam interacts
with the target and then impinges on a single-pixel (bucket) detector that provides no
spatial resolution, whereas the other beam traverses an independent path and impinges on
a scanning pinhole detector or a high-resolution camera (without any interaction with the
target). The image is obtained by correlating the output photocurrents from these
photodetectors. Figure 1(a) shows a representative block diagram of this experimental
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Figure 1. Ghost imaging architectures showing imaging in transmission. (a) In the dual-arm version of ghost

imaging, the reference arm is measured with a high-resolution camera (or a scanning pinhole detector) to

determine the spatial beam profile (speckle pattern). (b) In computational ghost imaging, the speckle

pattern is computed using the transmitter-plane beam profile and paraxial free-space beam propagation

theory.

setup. The term “ghost imaging,” which was coined soon after the initial experiments
were reported, emphasizes the fact that neither photocurrent alone is sufficient to derive
the target image, but that by cross correlating the two photocurrents one generates an
image of the target. A rich set of ghost imaging experiments have been reported in the
scientific literature using both classical and quantum sources of illumination.1 More
recently, a computational version of ghost imaging, shown in Figure 1(b), has been
proposed [8] and demonstrated [9]. In this configuration of ghost imaging, the
measurements obtained from the reference arm (with the high-resolution detector) is
replaced by a computational derivation of the measurement-plane intensity profile of the
reference-arm beam, using the principles of paraxial free-space propagation. Although its
discovery follows a very different path, computational ghost imaging is in fact a
structured-illumination imager [10] coupled with computational algorithms to generate the
final image. Consequently, the algorithms applied to computational ghost imaging have
diversified beyond simple correlation measurements, and now include modern
reconstruction algorithms based on compressive sensing [11, 12]. It is feasible to expect
further improvements by making use of apriori information regarding the target image.

Although quantum sources—namely, entangled photon pairs—have been shown to have
contrast and in some cases signal-to-noise ratio (SNR) advantages over classical
sources [6], the low photon-flux of their output limits their applicability to remote sensing.
Thus, the focus of our attention in this article is on classical-state ghost imaging, for which
bright sources abound. It is worthwhile to begin with a summary of the physics
underpinning classical pseudothermal-state ghost imaging. The source beam traverses a

1We define a classical source as one whose photodetection statistics can be accurately described using the

semiclassical (shot-noise) theory. This is equivalent to having a source state with a proper P -representation

as a mixture of coherent states [7]. A quantum source, is one whose photodetection statistics cannot be

described by the semiclassical theory, i.e., the source state does not have a proper P -representation.
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path of length L, and illuminates an object. Because the source has low spatial coherence,
i.e., the complex amplitudes of two points on the same transverse plane decorrelate rapidly
as the distance between the points exceed a very small fraction of the beam width, the
source will project a speckle pattern on the object of interest. The key to ghost imaging is
the knowledge of the spatial and temporal variations of this speckle pattern, which is
acquired either by measuring the high-resolution image of a reference beam that has the
identical speckle pattern (Figure 1(a) version), or by computing the speckle pattern using
the knowledge of the transmitted field and the propagation geometry (Figure 1(b)
version). The scattered light resulting from the interaction of the illumination and the
object is collected with a single-pixel (bucket) detector. The photocurrent—whose
fluctuations are ideally proportional to the sum of the fluctuations observed in the
transmitter-generated speckles—is then processed to resolve the transverse profile of the
object. This signal processing can take on a rather elementary linear form such as cross
correlation, or can be more complex and nonlinear, such as L1-norm minimization.
Henceforth we refer to the former correlation-based method as conventional ghost
imaging, as this is the processing utilized in early ghost imaging experiments.

The scientific and engineering community largely now understands the fundamental
physical principles that govern ghost imaging using illumination sources that are either
classical or quantum. The recent focus has shifted towards identifying applications that
can benefit from this imaging modality. For example, ghost imaging has been studied for
standoff imaging of the scattering from objects [13], and its performance has been
characterized when the imaging is performed through atmospheric turbulence [14, 15]. In
this article, we build on this recent literature to analyze, in detail, remote sensing using
ghost imaging. Our emphasis here is to highlight the fundamental advantages and
disadvantages pertaining to this imaging modality via a rigorous analysis of its
performance, and to outline the scenarios in which ghost imaging is desirable over
conventional imaging techniques.

Our article is organized as follows. In Section II we begin by introducing the
computational ghost imaging architecture that is the focus of our analysis in this article.
We derive its image signature and the resolution in Section III. In Section IV we briefly
analyze a method by which turbulence-induced resolution degradation can be mitigated.
We then derive, in Section V, the signal-to-noise ratio, and we discuss the impact of
target-induced speckle. In Section VI we highlight the key conclusions from our analysis
and provide a thorough discussion of the fundamental advantages and disadvantages of
utilizing computational ghost imaging in remote sensing.

II. Remote Sensing via a Ghost-Imaging Architecture

Consider the remote imaging scenario shown in Figure 2. At the transmitter a
continuous-wave (cw) laser with center frequency ω0—and center wave number k0 ≡ ω0/c,
where c is the speed of light in vacuum—is spatiotemporally modulated via a spatial light
modulator (SLM), and projected onto a distant target. The field leaving the transmitter
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Figure 2. A ghost imaging configuration for remote sensing. The transmitter projects a spatiotemporally

modulated laser beam onto a target located L1 meters away along a path with atmospheric turbulence. The

receiver, not necessarily co-located with the transmitter, is L2 meters away from the target. The target is

assumed to be rough on the order of a wavelength, giving rise to diffuse surface scattering and speckle.

pupil, denoted by ES(ρ, t)e−iω0t where ES(ρ, t) is the baseband envelope in units of√
photons/m2s, undergoes quasimonochromatic paraxial propagation over a L1-meter

path through atmospheric turbulence. The field incident on the object, whose baseband
envelope is denoted by E1(ρ, t), diffusely scatters from the surface of the target that is
assumed rough on the order of a wavelength. The surface scattering is therefore modeled
as quasi-Lambertian. The ghost-imaging receiver, which is not constrained to be
co-located with the transmitter, consists of a single-pixel (bucket) detector that simply
collects and detects all the power illuminating its aperture. We assume that the receiver is
located L2 meters away from the target, and that the angular extent of the receiver (as
seen from the target) is small enough to employ the paraxial approximation to propagate
the target-scattered light to the receiver aperture. As the bucket detector does not provide
any inherent spatial resolution, the photocurrent must be processed to obtain an image of
the object. The processing we consider here is an array of correlation filters that—as we
shall see shortly—collectively yield a sampled version of the 2D spatial Fourier transform
of the object’s mean transverse reflection profile.2

In the following subsections we detail the formulation of this remote-sensing scenario. In
our analysis we shall include several nonidealities associated with a practical
remote-sensing system. First, we presume that background radiation will couple into the
receiver aperture, contributing noise to the photocurrent output from the bucket detector.
Second, we assume a photodetector with sub-unity detection efficiency3, nonzero dark

2Although we consider a reflection geometry in this article, the results extend to a transmission geometry

in a straightforward manner.

3We define detection efficiency as the product of losses incurred due to sub-unity transmissivity of optical

elements in the front-end of the receiver (e.g., lenses, filters), and the quantum efficiency of the photodetector.
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current, non-unity internal gain and associated excess noise (e.g., due to the avalanche
process seen in avalanche photodiodes), and nonzero thermal noise (e.g., due to
post-detection amplifiers and other electronics).

A. Forward Path (from transmitter to target)

For this discussion let us assume that the transmitted beam is propagating in the positive
z direction as shown in Figure 3. Suppose that the SLM at the transmitter is located in
the z = 0 plane, and consists of a (2M + 1) × (2M + 1) array of d-meter×d-meter pixels.
Because there is little loss in generality, we will assume that the SLM has 100% fill factor,
such that it has dimensions D ×D, where D = (2M + 1)d. We shall assume that the SLM
is centered along the optical axis of the transmitter, such that the center of pixel
n ≡ (n,m) is at the transverse coordinate ρ′

n = (nd,md), and it occupies the region

An ≡
{

ρ′ : ρ′ ∈
(
nd− d/2, nd+ d/2

]
×
(
md− d/2,md+ d/2

]}
(1)

on the transverse (z = 0) plane, where n,m = −M, . . . ,M . We assume that the pixels of
the SLM are modulated with circularly-symmetric, independent, identically-distributed,
and stationary jointly-Gaussian random processes fn(t) having the phase-insensitive
correlation function

R(τ) ≡ 〈f∗n(t)fn(t+ τ)〉 = e−τ
2/2T 2

0 (2)

and the phase-sensitive correlation function 〈fn(t)fn(t+ τ)〉 = 0. In equation (2), T0 is
referred to as the coherence time of the modulation.

Suppose that a z-propagating cw laser field with center frequency ω0, photon flux P (with
units photons/s), and a spatially-uniform transverse profile, is incident on the SLM. The
baseband envelope of the output field from the SLM is given by

ES(ρ′, t) =

√
P

D2

∑
n

fn(t)ξ(ρ′ − nd) (3)

where

ξ(ρ′) ≡

⎧⎨⎩1, ρ′ ∈ (−d/2, d/2] × (−d/2, d/2]

0, otherwise
(4)

is an indicator function corresponding to one pixel on the z = 0 plane.

Along the path to the target, ES(ρ′, t) undergoes quasimonochromatic paraxial
propagation through atmospheric turbulence. The Extended Huygens-Fresnel principle is
used to determine the baseband envelope of the field at the object plane z = L1, denoted
by E1(ρ, t) and given by [16, 17, 18]

E1(ρ, t) =
∫
ES(ρ′, t− L1/c)hFS(ρ − ρ′;L1)eψ(ρ,ρ′)dρ′ (5)

For the purposes of our analysis, all of these efficiency factors can be combined into one parameter which

we refer to as the detection efficiency.
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Figure 3. The paraxial propagation geometry for the transmitted beam.

where hFS(ρ;L) is the Huygens-Fresnel free-space (i.e., vacuum) propagation Green’s
function

hFS(ρ;L) ≡ k0e
ik0L

i2πL
ei

k0
2L |ρ|2 (6)

and ψ(ρ,ρ′) is a complex-valued Gaussian random field denoting the phase and amplitude
fluctuations due to atmospheric turbulence seen at ρ on the z = L1 plane, given a point
source at ρ′ on the z = 0 plane. In the weak-fluctuation regime, the real and imaginary
parts of ψ(ρ,ρ′)—typically denoted with χ(ρ,ρ′) and φ(ρ′,ρ) respectively—are jointly
Gaussian random fields, and within the regime of validity of Kolmogorov-spectrum
turbulence the two-source spherical-wave wave structure function for ψ becomes [17]

Dψ,ψ(ρ,ρ′) ≡
〈∣∣ψ(ρ1,ρ

′
1) − ψ(ρ1 + ρ,ρ′

1 + ρ′)
∣∣2〉

= 2.914k2
0L1

∫ 1

0

C2
n,T (sL1)|ρ′(1 − s) + ρs|5/3ds (7)

where C2
n,T (z) is the turbulence strength profile along the transmitter-to-target path. In

the preceding formulation we have implicitly assumed a frozen atmosphere model, i.e., we
have assumed that the temporal window of interest (the integration time at the receiver) is
significantly shorter than the coherence time of the turbulent eddies that give rise to the
ψ(ρ,ρ′) term, such that the time-dependence of the fluctuations can be neglected.

Substituting equation (3) into equation (5), and assuming that L1 is far enough into the
far-field such that the quadratic phase factors encountered in equation (5) can be safely
neglected, we find that the field incident on the target is given by

E1(ρ, t) =

√
P

D2

k0d
2

i2πL1
Ξ(k0ρ/L1)

∑
n

fn(t− L1/c)eψ(ρ,nd)e−i
k0
L1

ρ·nd (8)

where
Ξ(k) ≡ sin(kxd/2)

kxd/2
sin(kyd/2)
kyd/2

(9)

and k ≡ (kx, ky). In arriving at equation (8) we have made the additional assumption that
d is much smaller than the transmitter-plane coherence length of the atmosphere, denoted
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henceforth as ρ0.4 Given that SLM pixels are typically tens of micrometers, and ρ0 in the
weak turbulence regime is on the order of centimeters [17, 18], this approximation is likely
to hold in most imaging scenarios.

B. Return Path (from target to receiver)

The incident field E1(ρ, t)e−iω0t scatters off of the stationary target surface, denoted by
T (ρ). We assume that the surface roughness of the object is on the order of a wavelength,
giving rise to quasi-Lambertian scattering, whose statistics we model as a zero-mean
Gaussian random field T (ρ), with the second-order moments

〈T ∗(ρ1)T (ρ2)〉 =
λ2

0

π
T (ρ1)δ(ρ1 − ρ2) (10)

and 〈T (ρ1)T (ρ2)〉 = 0. Here λ0 ≡ 2π/k0 is the center wavelength of the illumination, and
T (ρ) is the (ensemble-averaged) transverse profile of the target that we would like to
image.5 The baseband envelope of the field at the receiver aperture—the bucket detector
shown in Figure 2—can be evaluated using, once again, the Extended Huygens-Fresnel
principle

E2(ρ, t) =
∫
T (ρ′) E1(ρ′, t− L2/c)hFS(ρ − ρ′;L2)eψR(ρ,ρ′)dρ′ . (11)

Here ψR is the turbulence-induced complex phase perturbation on the return path, with a
structure function given by the same form in equation (7), but with C2

n,R(z) replacing
C2
n,T (z) as the turbulence profile on the return path. Note that, because we do not assume

that the receiver is co-located with the transmitter, the turbulence profile on the target
return path may be significantly different than that on the forward path.

The measurement at the receiver is a (2M + 1)2-element filter bank yielding the outputs6

cn =
1
T

∫ T/2

−T/2
gn(t)i(t)dt (12)

where i(t) is the photocurrent (reported here in units of electrons/s) generated by the
bucket detector, and T is the integration time. The filter impulse responses are given by

gn(t) ≡ f∗0(t)fn(t) − 〈f∗0(t)fn(t)〉 . (13)

Our motivation for choosing these filters will become apparent in Section III where we
derive the image signature.

4We define ρ0 ≡
(
2.914k2

0L1

∫ 1
0 C2

n,T (sL1)(1 − s)5/3ds
)−3/5

, i.e., ρ0 is the displacement at which

Dψ,ψ(0, ρ) equals unity.

5Our choice of the denominator π in the expression above is to ensure that with T (ρ) = 1, the correlation

function is consistent with that of a Lambertian scatterer [19].

6As we shall see in Section III, the number of measurements can be reduced by a factor of two due to the

conjugate symmetry between the cn and c−n measurements. However, we shall not dwell on this further

here.
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Figure 4. The photodetection model used in the analysis of the ghost imaging receiver. The detection

efficiency is given by η < 1 (here equal to η = η1η2ηq). The photodetector is assumed to have dark current

with rate λd. The internal gain of the detector is random with mean 〈gi〉 = G, and second moment

〈g2
i 〉 = FG, where F > 1 is the excess noise factor (non-random gain can be modeled by setting F = 1).

Infinite-bandwidth thermal noise with spectrum NT is added to represent noise from post-detection

electronics. The overall bandwidth of the detector plus amplifier chain is represented with a linear

time-invariant filter hR(t). The output from this filter is the observed photocurrent i(t).

In our analysis we include the impact of several noise sources seen in nonideal
photodetectors, as shown in the Figure 4 model. In particular, we allow a sub-unity
detection efficiency η, dark current with rate λd (normalized to have units electrons/s),
internal random gain with mean value G and excess noise factor F ,7 and zero-mean
thermal noise with constant spectrum NT (reported in units of electrons2/s) over the
bandwidth of the band-limiting filter hR(t). The observed photocurrent i(t) is therefore a
random process given by

i(t) =
∫
hR(t− τ)i∞(τ)dτ (14)

where i∞(t) represents an infinite-bandwidth (random) photocurrent, and the finite
bandwidth of the receiver is modeled via hR(t). We will see in Section V that ac coupling
the photocurrent i(t) improves noise rejection, and therefore, we will assume that hR(t)
includes a dc notch. Furthermore, for analytic convenience, we shall assume that the
composite baseband frequency response of the photodetectors and their ac-coupling is
given by the difference of two Gaussian functions

HR(ω) = F [hR(t)] = e−2ω2/ω2
R − e−2ω2/ω2

N (15)

where ωR is the baseband bandwidth of the detector, ωN � ωR is the stopband bandwidth
of the ac-coupling notch around ω = 0, and F [hR(t)] denotes the Fourier transform of the
composite filter’s impulse response, hR(t). In order to minimize suppression of the
baseband photocurrent fluctuations, ωNT0 � 1 will be assumed in all that follows.

Using the semiclassical theory for photodetection,8 i∞(t) can be modeled as a random

7The excess noise factor F is the ratio of the second moment of the gain to the square of the mean.

8Because our focus in this article is strictly on classical fields, we shall rely on the semiclassical theory of pho-

todetection, which yields quantitatively equivalent results to a full quantum treatment of the measurement

[5, 7].
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process with conditional mean

〈i∞(t)|P (t)〉 = GηP (t) + λd (16)

and conditional covariance

〈Δi(t1)Δi(t2)|P (·)〉 =
[
FG2

(
ηP (t1) + λd

)
+NT

]
δ(t2 − t1) (17)

where Δi(t) = i(t) − 〈i(t)|P (t)〉, and P (t) is the photon flux incident at the receiver
aperture AR, given by

P (t) =
∫
AR

|E2(ρ, t) + EB(ρ, t)|2dρ . (18)

In equation (18) we have represented the field incident on the receiver aperture as the
superposition of the desired signal field E2(ρ, t) and a background field, EB(ρ, t). We shall
model the latter as a zero-mean Gaussian random field with the nonzero phase-insensitive
correlation function

〈E∗
B(ρ1, t1)EB(ρ2, t2)〉 = IBKB(ρ2 − ρ1)RB(t2 − t1) (19)

where IB is the uniform mean photon irradiance (with units of photons/m2s), KB(ρ) is
the spatial correlation function with width on the order of the center wavelength λ0, and
RB(τ) is the temporal correlation function with coherence time much shorter than both
the integration time of the photodetector and the modulation rate, T0, of the source. The
source of this background radiation in remote sensing applications during the daytime is
primarily diffusely-scattered sunlight, which results in a background sky radiance for
sensors looking up towards the sky, and a background upwelling radiance for sensors
looking down at the Earth (terrestrial imaging systems may experience a combination of
these two background sources) [20, 21].9

III. Image Signature

At this juncture we have defined all of the necessary components to derive the mean image
signature of this remote-sensing instrument. In the following analysis, we are going to
neglect the transmitter-to-receiver propagation time delay equal to (L1 + L2)/c, to reduce
the notation clutter. This can be added in later, by simply shifting the time index at the
receiver by this propagation delay. Using equation (12), we can write the mean values of
the outputs from the receiver filters as

〈cn〉 =
1
T

∫ T/2

−T/2

∫ ∞

−∞
hR(t− τ)〈gn(t)i∞(τ)〉dτdt . (20)

Thus, the key step to determining 〈cn〉 is evaluating

〈gn(t)i∞(τ)〉 = ηG

〈
gn(t)

∫
AR

〈
|E2(ρ, τ)|2|{fn}

〉
dρ

〉
(21)

9In our analysis we are neglecting any coherent reflections from layers in the atmosphere (or the space-

atmosphere boundary) that may couple a fraction of the transmitter-modulated field into the receiver. Such

noise would result in a non-zero background in the image signature and degrade the signal-to-noise ratio.
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where we have used {fn} as the shorthand notation for the set of all modulation functions
for t ∈ [−T/2, T/2]. The right-hand side of the expression above is obtained by the
judicious use of the law of iterated expectations, the conditional mean from equation (16),
and the observation that 〈gn(t)〉 = 0. Expanding E2(ρ, τ) using equation (11), and
utilizing equation (10) along with the fact that the fluctuations of E1(ρ, t) and those
induced by the target T (ρ) are independent, we obtain∫

AR

〈
|E2(ρ, τ)|2|{fn}

〉
dρ

=
1
πL2

2

(∫
AR

〈e2χ(ρ′,ρ)〉dρ

)∫
R2

T (ρ′)|Ξ(k0ρ
′/L1)|2

〈
|E1(ρ′, τ)|2|{fn}

〉
dρ′ . (22)

The integral in the parenthesis above is equal to AR because 〈exp{2χ(ρ′,ρ)}〉 = 1 for
clear-air turbulence. This shows that the value of 〈cn〉 is unaffected by turbulence on the
return path from the target.

To simplify equation (22) we assume that T (ρ′)|Ξ(k0ρ
′/L1)|2 ≈ T (ρ′), i.e., that the target

of interest is well within the area of illumination. Then, substituting equation (22) into
equation (20), we find that 〈gn(t)|E1(ρ′, τ)|2〉 must be evaluated, which is straightforward
to do using equation (8), and noting that

〈gn(t)f∗n′(τ)fm′(τ)〉 = |R(t− τ)|2δ0,m′δn,n′ (23)

where R(τ) is defined in equation (2), and δn,m = 1 for n = m, but 0 otherwise.
Substituting the result back into equation (20), we arrive at our final answer

〈cn〉 =
ΩR
2π

× 2ηGP
d2

D2

d2

λ2
0L

2
1

× 1√
1 + 8

ω2
RT

2
0

× T̃ne
−D(n)/2 (24)

where ΩR is the solid angle subtended by the receiver aperture as seen from the target,

T̃n ≡
∫

T (ρ)ei2πdn·ρ/λ0L1dρ (25)

is the sampled 2D spatial Fourier transform of the object image, and

D(n) ≡ exp
{
− |n|5/3

(ρ0/d)5/3

}
(26)

is the single-source wave structure function of the atmosphere, with ρ0 denoting the
transmitter-plane coherence length. From this expression we see that, in the absence of
turbulence (ρ0 → ∞), the receiver reconstructs the 2D Fourier transform of the object’s
transverse profile, sampled at intervals d/(λL1). Using time-frequency Nyquist relations
we can conclude that the sampling period would result in aliasing of the target T (ρ)
outside of the radius λL1/d. However, because we have already assumed that
T (ρ′)|Ξ(k0ρ

′/L1)|2 ≈ T (ρ′), the target is confined well-within this radius, consequently,
aliasing is negligible.

Let us define the diffraction-limited resolution as the inverse of the highest sampled spatial
frequency of the target image, i.e.,

rd ≡ λ0L1

Md
=

2M + 1
2M

2λ0L1

D
≈ 2λ0L1

D
(27)
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where the last approximation follows from M 
 1. From equation (24), we find that, in
the presence of turbulence, the forward -path turbulence results in a multiplicative,
exponentially-decaying attenuation in spatial frequency, with the e−1 attenuation occurring
at Mt = 23/5ρ0/d. Then, the resolution in the presence of turbulence can be written as

r ≡ max
(
λ0L1

Md
,
λ0L1

Mtd

)
≈ 2λ0L1

min
(
D, 28/5ρ0

) . (28)

Therefore, if the transmitter aperture width exceeds the transmitter-plane atmospheric
coherence length ρ0, the image resolution becomes turbulence limited, and it saturates at
rt = λ0L1/(23/5ρ0). Recall that the image resolution in classical free-space (i.e., vacuum)
ghost imaging is proportional to the size of the speckles at the object plane [6], which is
inversely proportional to the source diameter in far-field imaging. Thus, in the absence of
turbulence, the larger the transmitter aperture, the higher the image resolution. However,
this relation no longer holds when turbulence is present in front of the transmitter
aperture. In particular, when the transmitter aperture exceeds the atmospheric coherence
diameter, the far-field speckle size becomes limited by the atmospheric coherence length,
and this results in the turbulence-limited saturation seen in equation (28).

The transition of resolution from the diffraction-limited regime to the turbulence-limited
regime can be shown analytically when Gaussian functions are employed to approximate
the last term in equation (24). In particular, we write

T̃ne
−|n|5/3/2(ρ0/d)

5/3 × sqr (n,M) ≈ T̃ne
−|nd|2/2ρ20e−|nd|2/2(Md)2 (29)

where sqr(n,M) = 1 if n,m ∈ {−M, . . . ,M}, and 0 otherwise. Next, by replacing nd with
a continuous spatial-frequency variable λ0L1f , and inverse Fourier transforming the
function, we find that the resolution of the image is given by

r =
2λ0L1

D

√
1 +

D2

4ρ2
0

(30)

which is in agreement with earlier derivations of the resolution of ghost imaging over
horizontal-path turbulence [15]. The transition between the two regimes is shown in
Figure 5.

IV. Speckle Reduction via Correlography

As we have shown in the previous section, the ghost imaging mean signature becomes
limited by turbulence when the transmitter-plane atmospheric coherence length is smaller
than the transmitter aperture diameter. This limitation can be overcome by well-known
speckle mitigation techniques, which are applicable when the object of interest lies in a
single isoplanatic patch [17, 18]. Here we shall briefly describe one such technique. Let us
begin by considering the short exposure image signature, wherein the integration time T is
chosen to be much shorter than the atmospheric coherence time, such that independent
realizations of the turbulence-induced random complex phase terms are not averaged
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Figure 5. The plot shows the transition of ghost-image resolution from the diffraction-limited regime to the

turbulence-limited regime as the aperture size increases.

over.10 Using equations (22) and (8), the short-exposure image can be expressed as

〈cn〉s =
1
πL2

2

(∫
AR

e2χ(ρ′,ρ)dρ

)∫
T (ρ′)eψ

∗(ρ′,0)+ψ(ρ′,nd)ei
k0d
L1

ρ′·ndρ′ . (31)

Assuming that the coherence diameter of the turbulence on the return path is much
smaller than the receiver aperture diameter, the integral over the return-path turbulence
can be approximated by its mean value AR (we know from the previous section that this
relation holds with equality in the long-exposure case). Now suppose, in addition, that the
object lies in a single isoplanatic patch, such that∫

T (ρ′)eψ
∗(ρ′,0)+ψ(ρ′,nd)ei

k0d
L1

ρ′·ndρ′ ≈ eψ
∗(0,0)+ψ(0,nd)T̃n (32)

is a valid approximation. If the receiver evaluates |〈cn〉s|2 in each of these short exposures,
then the turbulence-averaged image becomes

〈|〈cn〉s|2〉 =

⎛⎝ΩR
2π

× 2ηGP
d2

D2

d2

λ2
0L

2
1

× 1√
1 + 8

ω2
RT

2
0

⎞⎠2

e4Kχ,χ(0,nd)|T̃n|2 (33)

where Kχ,χ(ρ,ρ′) is the covariance function of the log-amplitude turbulence fluctuations.
Because these fluctuations are often assumed to be negligible compared to the fluctuations
in the phase, exp[4Kχ,χ(0,nd)] ≈ 1. In other words, as is common in techniques tailored

10Given that the atmospheric coherence time is typically longer than a millisecond, and SLM’s have modu-

lation bandwidths that are several MHz, correlations can be taken nominally over thousands of modulation

symbols before the state of turbulence has significantly changed.
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to mitigate speckle noise, it is possible to resolve |T̃n|2 at approximately the diffraction
limit, but only at the expense of the phase information in T̃n. Despite the lack of phase
information from the direct measurements, however, all hope is not lost in reconstructing
T (ρ). In particular, T̃n is the (complex-valued) 2D Fourier transform of a nonnegative
function, and therefore its phase is constrained. Iterative phase retrieval algorithms have
been successfully implemented, for example in speckle correlography [22, 23, 24], to find
feasible solutions to this constrained problem. These techniques can be directly applied to
ghost imaging as well, provided that the transmitter SLM modulation rate is sufficiently
fast relative to the atmospheric coherence time.

V. Signal-to-Noise Ratio

Now that we have established the image characteristics of the ghost imaging configuration
in Figure 2, let us turn our attention to its signal-to-noise ratio. We define the SNR of
each measurement as

SNR =
|〈cn〉|2
〈Δc2n〉

(34)

where Δcn = cn − 〈cn〉. Because we have already computed the numerator in equation
(24), we start by evaluating the denominator. The variance of the cn measurement can be
written as

〈|Δcn|2〉 =
1
T 2

∫ T/2

−T/2

∫ T/2

−T/2

∫∫
hB(t1 − τ1)hB(t2 − τ2)

× cov
(
g∗n(t1)i∞(τ1), gn(t2)i∞(τ2)

)
dτ1dτ2dt1dt2 (35)

where cov(X,Y ) ≡ 〈XY 〉 − 〈X〉〈Y 〉. The covariance in the integrand of equation (35) can
be expanded as

cov
(
g∗n(t1)i∞(τ1), gn(t2)i∞(τ2)

)
≡
〈
g∗n(t1)gn(t2)i∞(τ1)i∞(τ2)

〉
−
〈
g∗n(t1)〈i∞(τ1)|{fn}〉

〉〈
gn(t2)〈i∞(τ2)|{fn}〉

〉
. (36)

The first term in this covariance can be evaluated as

〈g∗n(t1)gn(t2)i∞(τ1)i∞(τ2)〉 =
〈
g∗n(t1)gn(t2)〈i∞(τ1)i∞(τ2)|{fn}〉

〉
=
〈
g∗n(t1)gn(t2)

[〈
Δi∞(τ1)Δi∞(τ2)|P (·), {fn}

〉
+
〈
i∞(τ1)|P (·), {fn}

〉〈
i∞(τ2)|P (·), {fn}

〉]〉
. (37)

We substitute the conditional mean from equation (16) and the conditional covariance
from equation (17) into equation (37) above, to arrive at the following expression for the
conditional correlation of the (infinite-bandwidth) photocurents:

〈i∞(τ1)i∞(τ2)|{fn}〉

=
[
FG2

(
η〈P (τ1)|{fn}〉 + λd +NT

)]
δ(τ1 − τ2) +G2η2〈P (τ1)P (τ2)|{fn}〉 +K1 (38)
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where we have not bothered to express K1 explicitly, as it represents the terms that will be
filtered out by the dc notch in the hR(t) filter. To evaluate equation (38) we must first
evaluate the conditional correlation function of P (t), using its definition from equation
(18). Noting that E2 and EB are statistically-independent random fields, and recalling
that EB is a Gaussian random field with low spatiotemporal coherence, we can expand
this correlation as

〈P (τ1)P (τ2)|{fn}〉 �

∫
AR

∫
AR

〈|E2(ρ1, τ1)|2|E2(ρ2, τ2)|2|{fn}〉dρ1dρ2 +K2 (39)

where, once again, we have not bothered to evaluate K2, which represents terms that will
be filtered out by the dc notch in hR(t). Note that the fourth-order (conditional) field
moment in equation (39) cannot be factored into second-order moments using the
Gaussian moment factoring theorem, as E2(ρ, t) is not a Gaussian random field, due to
the quasi-Lambertian scattering and the propagation through atmospheric turbulence.
Instead, to arrive at the final expression we use equations (8) and (11), and the
assumption that T (ρ) is Gaussian, to express E2(ρ, t) in terms of E1(ρ, t), T (ρ) and the
free-space propagation Green’s function. To simplify the calculations into an analytically
tractable form, we also assume that the object lies within a single isoplanatic patch. The
details of this derivation are provided in the Appendix.

We now return to the second term in the covariance expression given in equation (36), and
note that it can be evaluated as

〈g∗n(t1)i∞(τ1)〉〈gn(t2)i∞(τ2)〉 = G2η2〈g∗n(t1)P2(t)〉〈g∗n(t1)P2(t)〉 (40)

where we have defined
P2(t) ≡

∫
AR

〈|E2(ρ, t)|2|{fn}〉dρ (41)

for convenience. Using equations (39) and (40), we finally arrive at the following
expression for the covariance function specified in equation (36):

cov
(
g∗n(t1)i∞(τ1), gn(t2)i∞(τ2)

)
≈[

FG2η
〈
g∗n(t1)gn(t2)P2(τ1)

〉
+ 〈g∗n(t1)gn(t2)〉

{
FG2

(
ηIBAR + λd

)
+NT

}]
δ(τ1 − τ2)

+G2η2
〈
g∗n(t1)gn(t2)〈P2(τ1)P2(τ2)|{fn}〉

〉
−G2η2〈g∗n(t1)P2(t)〉〈g∗n(t1)P2(t)〉 . (42)

The first term in this covariance expression is nonstationary white noise resulting from
beating between the modulation and the signal-generated shot noise, the
background-generated shot noise, the dark noise, and the thermal noise. The second and
third terms represent the excess noise resulting from the transmitter-induced intensity
fluctuations via modulation.

The final step to evaluating the SNR is to substitute equation (42) into equation (35),
evaluate the temporal integrals, and then substitute the result into the denominator of
equation (34). We will not go into the detailed derivations in this article, as, aside from
being tedious, the process is straightforward. In the limit that the detector bandwidth has

14



broad enough bandwidth to track the source modulations, i.e., ωRT0 
 1, the SNR
simplifies to

SNR =
T |T̃n|2e−D(n)

TD1 + T0D2 +D3
(43)

where the three terms in the denominator of this expression are given by

D1 ≡ ΩS
ΩR

ε0 + |T̃n|2(1 − e−D(n)) (44)

D2 ≡
√
π

2
ε1 and (45)

D3 ≡ 1
κ2

[2FGκT̃0 + FG2ηIBAR + FG2λd +NT ] . (46)

In equations (43)–(46)

ε0 ≡ 1
(2M + 1)2

∑
n

|T̃n|2 (47)

is the square-averaged return from the target and ε1 ≡ (2M + 1)4ε0(1 + ΩS

ΩR
),

κ ≡ 2ηGPd2

D2
d2

λ2L2
1

ΩR

2π is the mean photocurrent arising from a T (ρ) = 1 target, and T̃n is
defined in equation (25). When D(n) � 1, such that turbulence does not impact the
measurement, the SNR saturates—with a long enough integration time T—to a finite
value (i.e., its maximum at the limit of fully-developed speckle), given by

SNRmax =
ΩR
ΩS

× |T̃n|2∑
n |T̃n|2/(2M + 1)2

. (48)

In words, the maximum SNR, in the limit of fully-developed speckle, is given by the
product of two ratios: the ratio of the angular extent of the receiver to that of the
transmitter as seen from the target, and the ratio of the energy in the spatial frequency
component being measured to the average energy over all spatial frequencies that are
measured. Consequently, much like other speckle-based imaging schemes, ghost imaging
has a speckle-induced SNR limit. In particular, the target-induced speckle will saturate
the SNR without any further modifications to suppress this speckle noise.

The SNR expression in equation (48) depends on the ratio of the angular extent of the
receiver and transmitter, as seen by the target. This ratio’s appearance in the SNR has an
intuitive interpretation. Quasi-Lambertian scattering from the target surface spreads the
incident energy equally over all plane-wave components in 2π steradians, with a small but
nonzero coherence angle between nearby plane waves. As the receiver subtends a larger
solid angle two effects are observed. First the fraction of the scattered energy collected by
the receiver increases, but the effect of this on SNR is limited as the SNR of
fully-developed speckle cannot be improved by increasing the signal energy. The second
and more critical impact is that when ΩR exceeds the coherence angle of the
target-scattered field, independent target-induced speckles are spatially averaged over the
bucket-detector surface, resulting in the SNR increase predicted in equation (48). This
also implies that multiple bucket detectors can be utilized at the receiver (for example
with a small-dimensional array) to improve the SNR in the limit of fully-developed
speckle. The solid angle subtended by the illumination source, on the other hand, has the
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opposite effect on the SNR. Recall that when operating in the diffraction-limited regime,
the source-generated speckle pattern on the target surface is inversely proportional to ΩS ,
i.e., as ΩS increases, smaller speckles are generated on the target surface, which results in
higher resolution. However, as the speckle size shrinks, each resolution cell averages over a
smaller scattering surface area, resulting in larger fluctuations in the returned photons and
a corresponding reduction in the image SNR.

VI. Discussion

Ghost imaging is an emerging imaging modality that has attracted the attention of a wide
range of researchers in disciplines encompassing physics, electrical engineering, and optical
engineering. Over the span of almost two decades since its first demonstration with a
quantum source generating pairs of entangled photons (biphotons), ghost imaging has also
been demonstrated with classical illumination sources; it has been shown to have intimate
connections with speckle-based interferometry and imaging; it has been demonstrated to
work with novel classical light fields such as phase-sensitive light; it has been proposed and
demonstrated as a structured-illumination computational camera; and it has served as a
testbed for novel image reconstruction algorithms including compressive imaging [6]. In
recent years, the focus of the technical community has shifted towards determining
application areas that could benefit from ghost imaging. In that vein limited results are
known to date. Ghost imaging has been proposed for encryption [25], and stand-off
sensing has been studied [13]. In very recent work, ghost imaging has been proposed for
light detection and laser ranging (LIDAR) applications.

In this article we have focused on a ghost-imaging remote sensing architecture and have
provided a rigorous treatment of its performance. Similar to previous work, we have
considered turbulence in both the forward and return path, as well as the impact of diffuse
surface scattering off of rough targets. However, in addition, we have included practical
receiver limitations, including background radiation, sub-unity detection efficiency, dark
noise, random internal gain and thermal noise. Using this framework, we have derived the
mean image signature, and the SNR of the remote sensing architecture shown in Figure 2.
We have also shown how speckle correlography can be applied to suppress
turbulence-induced speckle.

The computational ghost imaging architecture studied in this article is a
low-spatial-coherence imager: the transmitter, by use of a spatial light modulator, projects
a spatiotemporally-varying speckle pattern on the target. The scattered light from the
target is collected with a simple bucket detector offering no spatial resolution. The target is
spatially resolved in post-processing. In its conventional form this information is obtained
by correlating the temporal fluctuations of each speckle cell (which is known to the
transmitter), with the aggregate photon-flux measurement, such that the average surface
reflection from each speckle cell can be estimated. Although this process is straightforward
in principle, the remote-sensing environment is riddled with speckle-inducing phenomena
that has the potential to interfere with the operating principles of a ghost imager. Recent
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work on this subject and this article show that the impact varies with the cause. First, the
atmospheric turbulence on the target return path has little to no effect on the image
resolution and SNR. The impact of atmospheric turbulence in the forward path depends
on where the turbulence is concentrated. In particular, turbulence near the transmitter
aperture is most devastating, as any aperture larger than the atmospheric coherence
length provides no additional resolution. On the other hand, turbulence near the target
has negligible impact on ghost imaging. The most restrictive source of speckle in remote
sensing is that induced by the diffuse surface scattering from the target itself. It is evident
from earlier analysis and ours that once the speckle is fully developed no additional SNR
improvement is achieved with integration, and decorrelated target speckles must be
obtained by using angular, spectral or polarization diversity.

To highlight the differences between conventional active imagers and ghost imaging, let us
briefly compare the Figure 2 ghost imager to a conventional laser radar imager using a
flood-light illumination source, as shown in Figure 6. This comparison has been addressed
in earlier publications, but we shall offer some additional insights not noted elsewhere. It
is well-known that the laser radar scheme shown in Figure 6 achieves a resolution limit
that is very similar to that derived earlier for ghost imaging (see equation (30)), namely
the resolution is given by

rlr =
2λ0L2

D

√
1 +

D2
R

4ρ2
R

(49)

where DR is the diameter of the receiver pupil, and ρR is the receiver-plane coherence
length of atmospheric turbulence on the return path to the target. Herein lies the
fundamental difference between the origin of the turbulence-degradation seen in ghost
imaging and flood-illumination laser-radar imaging. Whereas the ghost-imaging resolution
is determined by the transmitter-plane atmospheric coherence length and otherwise is
insensitive to turbulence on the return path, the flood-illumination laser-radar resolution is
determined by the receiver-plane atmospheric coherence length, and otherwise is
insensitive to turbulence on the forward path.11 For horizontal-path imaging, in which the
C2
n turbulence profile is constant over the propagation path, or in monostatic imaging

configurations (i.e., when transmitter and receiver are co-located) the transmitter-plane
and receiver-plane coherence lengths are equal, thus making this distinction
inconsequential. However, the differences between the two schemes are highlighted when
the symmetry in the imaging system is broken. As an example, consider a bistatic imaging
configuration wherein the active illumination source is in Earth orbit. In this case
turbulence at the transmitter is not present (specifically, the transmitter-plane coherence
length ρ0 is on the order of meters). In addition, assume that the receiver is on the
ground, where turbulence is present. The Figure 2 ghost-imaging configuration is
insensitive to the turbulence on the return path, and therefore attains
near-diffraction-limited performance. On the other hand, the image resolution obtained
from the flood-illuminating laser radar will be degraded by the return-path turbulence. Of

11Note that raster-scanning laser radar shares the same limitations with ghost imaging regarding forward-

path turbulence. For the receive path, the sensitivity to turbulence is a function of whether the receiver

performs spatially-resolved imaging.

17



( )rough object, 

( , )
T
E t

L

{ ,..., }M Mn

transmitter

receiver

flood-light 
illumination

f
d

High-resolution camera
pixels( )M

cn

cw
-laser

Figure 6. A generic laser radar imager that uses flood-light active illumination.

course, in the opposite scenario wherein the illumination source is on the ground and the
receiver is in Earth orbit, the laser radar attains near-diffraction-limited performance
whereas ghost imaging is impacted by the turbulence coherence length at the transmitter
plane. Let us conclude this discussion by noting that bistatic imaging configurations have
been proposed for various purposes in the literature. For example, imaging the aerosol
profile of the atmosphere can be accomplished by a transmitter that focuses a laser beam
to a particular layer of the atmosphere, and a receiver that is placed off to the side images
the scattered light to derive an estimate of the aerosol concentration [26].

As a final point of comparison between the imaging scheme in Figure 6 and ghost imaging,
let us consider their SNRs. The flood-illuminated laser radar has the well-known SNR
ceiling of unity in the regime of fully-developed target-induced speckle [13]. In contrast, in
ghost imaging the SNR could be greater or less than one, depending on the ratio of the
solid angles subtended by the receiver and the transmitter, and the ratio of the energy in
the Fourier component that is being measured and the average energy. In the bistatic
configurations discussed above, large ground apertures (e.g., telescopes) are feasible,
rendering potentially a larger SNR than what would be obtained with a flood-light laser
radar. However, the gains in either imaging modality are severely limited by
target-induced speckle noise, so any practical imager would likely employ speckle
suppression algorithms to improve image quality.

Before closing our article, let us note several application areas in which ghost imaging may
be desirable. In recent literature a multiple-aperture imager, which measures the far-field
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speckle pattern generated from a laser beam scattering off of a target of interest has been
proposed [23]. In that architecture, the target is illuminated with laser light, and the
far-field speckle pattern is detected with multiple distributed apertures. Then, an iterative
phase retrieval algorithm is used to estimate the transverse profile of the target. The ghost
imaging architecture studied herein could be applied to the same scenario. In particular,
instead of flood illuminating a target with laser light, the transmitter could generate a
known time-varying speckle pattern on the region-of-interest, which eliminates the need for
a spatially-resolving detector at the receiver. Furthermore, distributed apertures could be
utilized to suppress target-induced speckle. Ghost imaging is also desirable for distributed
imaging applications. For example, because co-location of the transmitter and receiver is
not required and the receiver is very low complexity, the ghost-imaging architecture is
conducive to having a single high-complexity transmitter, and multiple very low cost
receivers scattered throughout a region of interest. Finally, ghost imaging may permit
imaging at electromagnetic frequencies for which single-pixel detectors are feasible, but
detector arrays have yet to be developed, such as the terahertz spectral range [27, 28].
Even in the infrared regime, where large arrays of photon-counting photodetectors are not
yet cost effective, a small array can be paired with a multi-megapixel SLM transmitter to
achieve resolutions far beyond what is achievable with the photon-counting arrays alone
and at the ultimate quantum mechanical sensitivities afforded by the photon counters.

In summary, we have provided a thorough analysis of the performance of a ghost imaging
architecture suitable for remote sensing. We have derived the image signature and SNR in
the presence of turbulence, background radiation and practical photodetector noises. We
have identified that turbulence which is concentrated near the transmitter aperture has
the most significant impact to the attainable resolution, whereas turbulence concentrated
near the target plane or that along the return path has little impact. We have briefly
discussed a speckle-suppression technique, namely speckle correlography, to overcome
turbulence-limited resolution. We have shown that with long integration times the SNR is
eventually limited by target-induced speckle noise. Finally, we have shown that the ratio
of the angular extent of the receiver to that of the transmitter, as seen from the target
plane, is a key parameter that determines the maximum attainable SNR in the presence of
fully-developed speckle.
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A. Appendix: The Photon-Flux Correlation Function

In Section V we briefly summarized the method by which we (approximately) evaluate the
integral ∫

AR

∫
AR

〈|E2(ρ1, τ1)|2|E2(ρ2, τ2)|2|{fn}〉dρ1dρ2 (A-1)

in equation (39). Here we shall provide some additional details. Using equation (11)—we
suppress the time delay L2/c for convenience—and the statistical independence of the
target-induced scattering process and the return-path atmosphere, we obtain

〈|E2(ρ1, τ1)|2|E2(ρ2, τ2)|2|{fn}〉

=
1

(λ0L2)4

∫∫ ∫∫ 〈
eψ

∗(ρ1,ρ
′
1)+ψ(ρ1,ρ

′′
1 )ψ∗(ρ2,ρ

′
2)+ψ(ρ2,ρ

′′
2 )
〉
〈T ∗(ρ′

1)T
∗(ρ′

2)T (ρ′′
1)T (ρ′′

2)〉

× e−i2πρ1·(ρ′′
1 −ρ′

1)/λ0L2e−i2πρ2·(ρ′′
2 −ρ′

2)/λ0L2

×
〈
E∗

1 (ρ′
1, τ1)E

∗
1 (ρ′

2, τ2)E1(ρ′′
1 , τ1)E1(ρ′′

2 , τ2)|{fn}
〉

dρ′
1dρ′′

1dρ′
2dρ′′

2 . (A-2)

Now, assuming that T (ρ) is a Gaussian random field allows us to use the
moment-factoring theorem [7] to obtain

〈T ∗(ρ′
1)T

∗(ρ′
2)T (ρ′′

1)T (ρ′′
2)〉 = T (ρ′

1)T (ρ′
2)
[
δ(ρ′

1 − ρ′′
1)δ(ρ′

2 − ρ′′
2) + δ(ρ′

1 − ρ′′
2)δ(ρ′

2 − ρ′′
1)
]
.

(A-3)
In addition, we assume that the object is in a single coherence cell of the return path
turbulence, such that we can approximate ψ(ρ,ρ′) ≈ ψ(ρ,0) for ρ′ coordinates at which
T (ρ′) differs appreciably from zero. We therefore find

〈|E2(ρ1, τ1)|2|E2(ρ2, τ2)|2|{fn}〉

=
1

(λ0L2)4

∫∫ ∫∫ 〈
|eψ(ρ1,0)+ψ(ρ2,0)|2

〉
T (ρ′

1)T (ρ′
2)
[
〈|E∗

1 (ρ′
1, τ1)|2|E1(ρ′

2, τ2)|2|{fn}〉

+ e−i2π(ρ2−ρ1)·(ρ′
1−ρ′

2)/λ0L2
〈
E∗

1 (ρ′
1, τ1)E

∗
1 (ρ′

2, τ2)E1(ρ′
1, τ2)E1(ρ′

2, τ1)|{fn}
〉]

dρ′
1dρ′

2 .

(A-4)

We approximate the ensemble average over atmospheric turbulence as

〈|eψ(ρ1,0)+ψ(ρ2,0)|2
〉

= e4Kχ,χ(ρ2−ρ1,0) ≈ 1 (A-5)

subsequently substitute equation (A-4) into equation (A-1), and perform the integrals over
the receiver aperture (i.e., over the variables ρ1 and ρ2). Finally, we assume that the
Fourier transform of the receiver aperture yields a much narrower function than T (ρ′),
such that we can approximate

∣∣∣∣∫AR

e−i2πρ′·ρ/λ0L1dρ

∣∣∣∣2 ≈ ARλ
2
0L

2
1δ(ρ

′) . (A-6)
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Following this process we arrive at the approximate expression∫
AR

∫
AR

〈|E2(ρ1, τ1)|2|E2(ρ2, τ2)|2|{fn}〉dρ1dρ2

≈ A2
R

λ4
0L

4
2

[∫∫
T (ρ′

1)T (ρ′
2)〈|E∗

1 (ρ′
1, τ1)|2|E1(ρ′

2, τ2)|2|{fn}〉dρ′
1dρ′

2

+ γ

∫
T 2(ρ′

1)〈|E∗
1 (ρ′

1, τ1)|2|E1(ρ′
1, τ2)|2|{fn}〉dρ′

1

]
(A-7)

where γ ≡ λ2
0L

2
2/AR. Next, we evaluate the moments inside the integral using E1(ρ, t)

from equation (8), and we assume that the object is also in a single isoplanatic patch of
the forward path turbulence, such that we obtain∫

AR

∫
AR

〈|E2(ρ1, τ1)|2|E2(ρ2, τ2)|2|{fn}〉dρ1dρ2

=
[
AR
λ2

0L
2
2

Pd2

D2

d2

λ2
0L

2
1

]2∑
n1

∑
m1

∑
n2

∑
m2

f∗n1
(τ1)fm1(τ1)f

∗
n2

(τ2)fm2(τ2)

×
〈
eψ

∗(0,n1d)+ψ(0,m1d)+ψ
∗(0,n2d)+ψ(0,m2d)

〉[
T̃n1−m1 T̃n2−m2 + γT̃ ′

n1−m1+n2−m2

]
(A-8)

where
T̃n ≡

∫
T (ρ)ei2πdn·ρ/λ0L1dρ (A-9)

as we had defined earlier in equation (25), and

T̃ ′
n ≡

∫
T 2(ρ)ei2πdn·ρ/λ0L1dρ . (A-10)

The expression in equation (A-8) is suitable to substitute back into equation (39). The
path to the final SNR expression stated in equation (43) follows a few more
straightforward steps once this substitution is carried out: the expectation over all
jointly-Gaussian {fn} processes is evaluated using the moment-factoring theorem. This
factoring results in the turbulence moment in equation (A-8) evaluating to approximately
unity inside the summation. In the final steps in arriving at the final SNR expression, we
use that T̃ ′

0 = D2ε0/λ
2
0L

2
1, where ε0 is defined in equation (47). Note that this expression

follows from the Parseval’s relation between T (ρ) and T̃n.
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